EQUIVALENT INVARIANT MEASURES

BY

JOSEPH MAX ROSENBLATT

ABSTRACT

Let G be a finitely-generated group of non-singular measurable transformations of a measure space (χ, β, p) . Fix $A \in \beta$ with p(A) > 0. A general technique for groups gives sufficient conditions for there to exist a G-invariant measure ν equivalent to p with $\nu(A) = 1$. These conditions are phrased in terms of the growth behavior of $g \to p(gB)$ for $B \in \beta$. The question of necessity is handled in some special cases.

Let (X, β, p) be a σ -finite positive measure space. An invertible measurable transformation T of X is a one-to-one onto map $T: X \to X$ such that both T and T^{-1} are β -measurable. T is non-singular if p(TE) = 0 exactly when p(E) = 0 for $E \in \beta$. If T is non-singular then so is T^{-1} .

A finitely-additive measure u on (X, β) is a set function $u: \beta \to [0, \infty]$ such that $u(A \cup B) = u(A) + u(B)$ if A and B are disjoint measurable sets. Given two finitely-additive measures u and v on (X, β) , we say u is equivalent to v when u(E) = 0 if and only if v(E) = 0 for $E \in \beta$. The term measure will be reserved for a countably-additive $u: \beta \to [0, \infty]$.

If u is a finitely-additive measure on (X, β) and T is an invertible measurable transformation of X, we say u is T-invariant when u(TE) = u(E) for all $E \in \beta$. If G is a group of invertible measurable transformations of X under composition, u is G-invariant when u is T-invariant for all $T \in G$.

If $B \in \beta$, 1_B denotes the *characteristic function* of B. If F is a finite subset of a set X and f is a real-valued function of X then $\langle 1_F, f \rangle$ denotes $\sum_{x \in F} f(x)$. For any linear functional ϕ on a linear space E of real-valued functions on X, we write $\langle \phi, f \rangle$ for the value $\phi(f)$ when $f \in E$.

Cardinality of a set F will be denoted by ||F||. For sets A and B, $A \setminus B$ is the difference set and $A \triangle B$ is $(A \setminus B) \cup (B \setminus A)$.

1.

Let G be a group and let \mathscr{L} be the linear space under pointwise addition of real valued functions on G. For $H \in \mathscr{L}$ and $g \in G$, $R_gH \in \mathscr{L}$ is defined by $R_gH(x) = H(xg)$. For a positive $H \in \mathscr{L}$ with $H \neq 0$, we define B_H to be the subspace of \mathscr{L} consisting of all functions K such that there exists $g_1, \dots, g_n \in G$ and r > 0 with $|K| \leq r \sum_{i=1}^n R_{g_i}H$. B_H is then invariant under the action of G on \mathscr{L} in that $R_gK \in B_H$ for any $g \in G$ and $K \in B_H$.

A linear functional ϕ on B_H is positive when $\langle \phi, K \rangle \geq 0$ for all $K \in B_H$ with $K \geq 0$. We say ϕ is G-invariant if $\langle \phi, R_g K \rangle = \langle \phi, K \rangle$ for all $g \in G$ and $K \in B_H$. For a finite set $F \subset G$ we write 1_F for the positive linear functional given by $\langle 1_F, K \rangle = \sum_{x \in F} K(x)$ for $K \in \mathcal{L}$.

We assume that G is finitely-generated by a finite set F. We write F^N for the set of all products $f_1 \cdots f_N$ where f_i is in F, F^{-1} , or $\{e\}$ for all $i = 1, \dots, N$.

THEOREM 1.1. Let $H \in \mathcal{L}$ be a positive non-zero function. Assume

$$\lim_{N} \langle 1_{F^{N}}, H \rangle^{1/N} = 1.$$

Then there is a positive G-invariant linear functional ϕ on B_H such that $\langle \phi, H \rangle = 1$. Also, there is a subnet $\{N_\gamma\}$ of the sequence $\{1, 2, 3, \cdots\}$ such that for all $K \in B_H$,

$$\lim_{\gamma} \langle 1_{F^{N\gamma}}, K \rangle / \langle 1_{F^{N\cdots}}, H \rangle = \langle \phi, K \rangle.$$

PROOF. For each finite set $F_0 \subset G$, there is $M \ge 1$ with $F_0 \subset F^M$. Hence, if $F_1 = F^M$ then $F_1 \supset F_0$ and $\lim_N \langle 1_{F_1}^N H \rangle^{1/N} = 1$. Let $a_n = \langle 1_{F_1}^{2^n}, H \rangle$. By choosing M larger to begin with we may assume $a_n > 0$ for all $n \ge 1$. $1 \le \liminf_{n \to \infty} a_{n+1}/a_n \le \liminf_{n \to \infty} a_n^{1/n} = 1$. So there is a sequence of integers n_k such that

$$\lim_{k\to\infty}\langle 1_{F_1^{n_k}+2},H\rangle/\langle 1_{F_1^{n_k}},H\rangle=1.$$

It follows that for any $f \in F_0$,

$$\langle 1_{F_1^{n_k+1}} \Delta_{F_1^{n_k+1}f}, H \rangle / \langle 1_{F_1^{n_k+1}}, H \rangle \leq 2 \langle 1_{F_1^{n_k+2}} \rangle_{F_1^{n_k}}, H \rangle / \langle 1_{F_1^{n_k}}, H \rangle \to 0.$$

Define an index set $\mathscr{A} = \{(F_0, M, \varepsilon)\}$ where F_0 is a finite subset of G, $M \ge 1$, and $\varepsilon > 0$ for all members of \mathscr{A} . We order this set by $(F'_0, M', \varepsilon') \ge (F_0, M, \varepsilon)$ if and only

if $F_0 \supset F_0'$, $M' \ge M$, and $\varepsilon' \le \varepsilon$. \mathscr{A} is thus a directed set. We choose $N = N(F_0, M, \varepsilon)$ such that $N \ge M$ and for all $f \in F_0$

$$\langle 1_{F^N \Delta F^N}, H \rangle / \langle 1_{F^N}, H \rangle < \varepsilon.$$

This gives us a net $\{N_{\alpha} \mid \alpha \in \mathscr{A}\}\$ of integers $N_{\alpha} \geq 1$ such that for all $g \in G$,

$$\lim_{\alpha} \langle 1_{F^{N\alpha} \Delta F^{N\alpha} g}, H \rangle / \langle 1_{F^{N\alpha}}, H \rangle = 0.$$

Also, for all $N \ge 1$ eventually $N_{\alpha} \ge N$. Thus, $\{N_{\alpha}\}$ is a subnet of $\{1, 2, 3, \dots\}$.

For simplicity write F_{α} for $F^{N_{\alpha}}$. We know for all $g \in G$,

$$\left|1 - \frac{\langle 1_{F_\alpha}, R_g H \rangle}{\langle l_F, H \rangle}\right| = \left|\frac{\langle 1_{F_\alpha} - 1_{F_\alpha g}, H \rangle}{\langle 1_{F_\alpha}, H \rangle}\right| \leq \frac{\langle 1_{F_\Delta F_\alpha g}, H \rangle}{\langle 1_{F_\alpha}, H \rangle}.$$

So $\lim_{\alpha} \langle 1_{F_{\alpha}}, R_{g}H \rangle / \langle 1_{F_{\alpha}}, H \rangle = 1$, for all $g \in G$. For any $K \in B_{H}$ there are $g_{1}, \dots, g_{n} \in G$ and r > 0 with $|K| \leq r \sum_{i=1}^{n} R_{g_{i}}H$. Therefore, $|\langle 1_{F_{\alpha}}, K \rangle / \langle 1_{F_{\alpha}}, H \rangle| \leq 2rn$ eventually. That is, the net of linear functionals $\phi_{\alpha} = 1_{F_{\alpha}} / \langle 1_{F_{\alpha}}, H \rangle$ is pointwise eventually bounded on B_{H} . This implies that some subnet ϕ_{γ} converges pointwise on B_{H} to a linear functional ϕ . It follows immediately that $\phi \geq 0$ and $\langle \phi, H \rangle = 1$.

To see that ϕ is G-invariant let $g \in G$ and $K \in B_H$. Suppose $|K| \leq r \sum_{i=1}^n R_{g_i} H$.

Then

$$\begin{split} \left| \left\langle \phi, K \right\rangle - \left\langle \phi, R_{g}K \right\rangle \right| \\ &= \lim_{\gamma} \left| \frac{\left\langle 1_{F_{\gamma}}, K \right\rangle - \left\langle 1_{F_{\gamma}}, R_{g}K \right\rangle}{\left\langle 1_{F_{\gamma}}, H \right\rangle} \right| \\ &= \lim_{\gamma} \left| \frac{\left\langle 1_{F_{\gamma}}, K \right\rangle - \left\langle 1_{F_{\gamma}g}, K \right\rangle}{\left\langle 1_{F_{\gamma}}, H \right\rangle} \right| \\ &\leq \lim_{\gamma} \left| \frac{\left\langle 1_{F_{\gamma}\Delta F_{\gamma}g}, \left| K \right| \right\rangle}{\left\langle 1_{F_{\gamma}}, H \right\rangle} \\ &\leq r \sum_{i=1}^{n} \lim_{\gamma} \frac{\left\langle 1_{F_{\gamma}\Delta F_{\gamma}g}, R_{g}H \right\rangle}{\left\langle 1_{F_{\gamma}}, H \right\rangle} \\ &= r \sum_{i=1}^{n} \lim_{\gamma} \frac{\left\langle 1_{F_{\gamma}g_{i}\Delta F_{\gamma}gg_{i}}, H \right\rangle}{\left\langle 1_{F_{\gamma}}, H \right\rangle}. \end{split}$$

Since $1_{F,g_1\Delta F,gg_1} \le 1_{F,g_1\Delta F} + 1_{F,\Delta F,gg_1}$, this last term converges to zero. Hence $\langle \phi, K \rangle = \langle \phi, R_g K \rangle$ for all $g \in G$ and $K \in B_H$. The linear functional ϕ and the net $\{N_g\}$ satisfy our claim.

LEMMA 1.2. Let (X, β, p) be a σ -finite measure space. Assume we have a finitely-additive measure u which is equivalent to p. Let v be defined for $E \in \beta$ by

$$v(E) = \inf \left\{ \sum_{i=1}^{\infty} u(E_i) : \bigcup_{i=1}^{\infty} E_i \supset E, E_i \in \beta \right\}.$$

Then v is a countably-additive measure and v is equivalent to p. If u is G-invariant for a group G of measurable transformations of (X, β) then v is G-invariant also.

PROOF. (See Calderón [1].)

REMARK. Calderón [1] is in the context where u is finite but his proof works equally well for any finitely-additive measure. Also, if we only know that p(B) = 0 implies u(B) = 0 for all $B \in \beta$, then p(B) = 0 implies v(B) = 0 for all $B \in \beta$.

THEOREM 1.3. Let (X, β, p) be a σ -finite measure space. Let G be a group generated by a finite set F and suppose G acts as a group of nonsingular measurable transformations of (X, β, p) . Assume we have a finitely-additive measure ψ on (X, β) with the following properties:

- (i) $\psi(B) = 0 \text{ if } p(B) = 0$;
- (ii) $\psi(gA) \neq 0$ for some $g \in G$;

(iii)
$$\lim_{N\to\infty} \left[\sum_{g\in F^N} \psi(gA) \right]^{1/N} = 1;$$

(iv) if p(B) > 0 then

$$\liminf_{N\to\infty} \sum_{g\in F^N} \psi(gB) / \sum_{g\in F^N} \psi(gA) > 0.$$

Then there is a G-invariant measure v equivalent to p with v(A) = 1.

PROOF. Let $H(g) = \psi(gA)$ for all $g \in G$. It satisfies the conditions of (1.1), hence there is a G-invariant positive linear functional ϕ on B_H with $\langle \phi, H \rangle = 1$ and there is a subnet $\{N_{\gamma}\}$ of $\{1, 2, 3, \dots\}$ such that $\langle 1_{FN_{\gamma}}, K \rangle / \langle 1_{FN_{\gamma}}, H \rangle \rightarrow \langle \phi, K \rangle$ for all $K \in B_H$.

For $B \in \beta$ define $p_B(g) = \psi(gB)$ for all $g \in G$. Define a finitely-additive measure u on (X, β) by

$$u(B) = \begin{cases} \langle \phi, p_B \rangle & \text{if } p_B \in B_H \\ \infty & \text{otherwise.} \end{cases}$$

Thus u is G-invariant since ϕ is G-invariant. If p(B) = 0 then p(gB) = 0 for all $g \in G$. So p(B) = 0 implies $\psi(gB) = 0$ for all $g \in G$ and $p_B = 0$. Hence p(B) = 0 implies u(B) = 0. If p(B) > 0 then either $u(B) = \infty$ or $u(B) = \langle \phi, p_B \rangle$ and

 $p_B \in B_H$. In the second case, since (iv) holds and $\{N_\gamma\}$ gets arbitrarily large eventually, u(B) > 0.

Use Lemma 1.2 to obtain a G-invariant measure v equivalent to p from the finitely-additive measure u. Since $0 < v(A) \le u(A) = 1$, a constant multiple of v is the desired measure.

COROLLARY 1.4. Let G be a group of non-singular measurable transformations of a σ -finite measure space (X, β, p) . Let G be generated by a finite set F. Let $A \in \beta$ with p(A) > 0. Assume

$$\lim_{N\to\infty} \left[\sum_{g\in F^N} p(gA)\right]^{1/N} = 1.$$

Assume also that when p(B) > 0

$$\inf_{N\geq 1} \sum_{g\in F^N} p(gB) \bigg/ \sum_{g\in F^N} p(gA) > 0.$$

Then there exists a G-invariant measure v equivalent to p with v(A) = 1.

PROOF. Let $\psi(B) = p(B)$ for $B \in \beta$. Then ψ satisfies the four conditions of Theorem 1.3.

REMARK. An interesting case in which Corollary 1.4 applies is when p(X) = 1 and G is a nilpotent group or at least contains a nilpotent subgroup of finite index. Then $||F^N||^{1/N} \to 1$ as $N \to \infty$; see Wolf [4]. It follows

$$\lim_{N\to\infty} \left[\sum_{g\in F^N} p(gA) \right]^{1/N} = 1.$$

So there is a G-invariant measure v equivalent to p with v(A) = 1 if for all p(B) > 0

$$\inf_{N\geq 1} \sum_{g\in F^N} p(gB) / \sum_{g\in F^N} p(gA) > 0.$$

The following corollary also comes from Theorem 1.3.

COROLLARY 1.5. Let G be a finitely-generated nilpotent group of non-singular measurable transformations of a σ -finite measure space (X, β, p) . Assume there is a positive measurable function f on X with

$$0 < \sup_{g \in G} \int_{gA} f dp < \infty.$$

Assume when p(B) > 0 then

$$\lim_{N\to\infty} \inf_{g\in F^N} \int_{gB} f \, dp \bigg/ \sum_{g\in F^N} \int_{gA} f \, dp > 0.$$

Then there exists a G-invariant measure v equivalent to p with v(A) = 1.

PROOF. Let
$$\psi(B) = \int_B f dp$$
 in Theorem 1.3.

REMARK. Clearly if p is equivalent to a σ -finite G-invariant measure v with v(A) = 1 then the function dv/dp satisfies Corollary 1.5. Corollary 1.4 is more interesting than 1.5 because it does not depend on finding the function f. Horowitz [3] has a result similar to Corollary 1.4 for an ergodic, conservative Markov operator.

If the $\sup_N \sum_{g \in F^N} p(gA) < \infty$, then the hypotheses of Corollary 1.4 are all satisfied. This is the dissipative case.

2.

It is an open question whether a converse of Corollary 1.4 holds. One should perhaps also assume in this context that $\bigcup_{g \in G} gA = X$ and

$$\lim_{N\to\infty}\left[\sum_{g\in F^N}p(gA)\right]^{1/N}=1.$$

Then the question is, assuming there is a G-invariant measure v equivalent to p with v(A) = 1, does it follow that for all B with p(B) > 0

$$\inf_{N\geq 1} \sum_{g\in F^N} p(gB) / \sum_{g\in F^N} p(gA) > 0 ?$$

We say a subset $B \in \beta$ is A-bounded when $1_B \le \sum_{i=1}^n 1_{g_i A}$ a.e. [p] for some $g_1, \dots, g_n \in G$. Since $\bigcup_{g \in G} gA = X$, any B with p(B) > 0 there is an A-bounded $B_0 \subset B$ with $p(B_0) > 0$. So the converse need only be verified for A-bounded sets.

There is at least one case in which the above condition does hold. We say G is ergodic if all G-invariant sets $B \in \beta$ satisfy p(B) = 0 or $p(X \setminus B) = 0$. If G is ergodic and p(B) > 0 then $\bigcup_{g \in G} gB = X$ a. e. [p].

Proposition 2.1. Assume (X, β, p) is a measure space with $A \in \beta$ such that,

$$\lim_{N\to\infty}\left[\sum_{g\in F^N}p(gA)\right]^{1/N}=1.$$

Assume G is ergodic and for all A-bounded $B \in \beta$

$$\lim_{N\to\infty} \sum_{g\in F^N} p(gB) / \sum_{g\in F^N} p(gA) \text{ exists.}$$

Then if p(B) > 0,

$$\inf_{N\geq 1} \sum_{g\in F^N} p(gB) / \sum_{g\in F^N} p(gA) > 0.$$

PROOF. Let u(B) be the

$$\lim_{N\to\infty} \sum_{g\in F^N} p(gB) / \sum_{g\in F^N} p(gA)$$

for A-bounded sets $B \in \beta$. Let $u(B) = \infty$ otherwise. Since

$$\lim_{N\to\infty} \left[\sum_{g\in F^N} p(gA) \right]^{1/N} = 1,$$

there is a sequence $\{N_i\}$ such that for all $h \in G$,

$$\lim_{t\to\infty} \left(\sum_{g\in F^{Ni}h\Delta F^{N_i}} p(gA) \middle/ \sum_{g\in F^{N_i}} p(gA) \right) = 0.$$

Using $\{N_i\}$, as in Theorem 1.1, shows u is G-invariant. Let v be induced by u as in Lemma 1.2. Then v is a G-invariant measure and p(B)=0 implies u(B)=0 and hence, v(B)=0. But we also know by the Vitali-Hahn-Saks theorem that u=v when restricted to any A-bounded set because there u is a measure. If p(B)>0, G ergodic implies $\bigcup_{g\in G}gB=X$ a. e. [p]. Since v(A)=1 and v is G-invariant, v(B)>0. Hence, for any A-bounded B with p(B)>0 we have u(B)>0 and thus,

$$\inf_{N\geq 1} \sum_{g\in F^N} p(gB) \bigg/ \sum_{g\in F^N} p(gA) > 0.$$

REMARK. It is not clear that the limit u(B) need exist for all A-bounded B when there exists a G-invariant measure v equivalent to p with v(A) = 1. This is also not clear in the case we replace the index N by N_i chosen as in the proof of (2.1). In the following we will see that such limiting behavior is the case when $v(X) < \infty$ and $p(X) < \infty$.

We consider now a finitely-generated group G and a fixed sequence of finite sets $F_N \subset G$ such that for all $g \in G$

$$\frac{\left\|gF_N\Delta F_N\right\|}{\left\|F_N\right\|}\to 0.$$

We also assume $F_N^{-1} = F_N$ for all N. Such a sequence $\{F_N\}$ exists if and only if G is amenable. (See [2] for the construction of such sequences.) We call $\{F_N\}$ a Følner sequence.

We assume we have a probability space (X, β, p) on which G acts as a group of non-singular measurable transformations. The measure gp is defined by gp(E) = p(gE) for all $E \in \beta$. For any $g \in G$, gp is equivalent to p and there is a positive measurable function w_g such that $gp(E) = \int_E w_g(x) dp(x)$ for all $E \in \beta$.

Let $L_1(p)$ be the absolutely-integrable functions of X with $||f||_1 = \int_X |f| dp$.

Let $L_{\infty}(p)$ be the a.e. bounded functions with $||f||_{\infty} = \inf\{K: K \ge |f| \text{ a.e. } [p]\}$. Define $L_g f(x) = f(gx)$ and $\tau_g f = L_g f w_g$ for all $f \in L_1(p)$ and $g \in G$. Then $||\tau_g f||_1 = ||f||_1$ for all $f \in L_1(p)$. Let ϕ_N be the linear operator defined by $\phi_N f = (1/||F_N||) \sum_{g \in F_N} \tau_g f$. Then $||\phi_N f||_1 \le ||f||_1$ for all $f \in L_1(p)$. The question we are concerned with here is the $||\cdot||_1$ -convergence of $\phi_N f$ for $f \in L_1(p)$.

THEOREM 2.2. The following statements are equivalent:

- (i) For all $f \in L_1(p)$ there is $f^* \in L_1(p)$ such that $\phi_N f \to f^*$ in the $\|\cdot\|_1$ norm.
- (ii) There is $f_0 \in L_1(p)$ such that $1/(\|F_N\|) \sum_{q \in F_N} w_q \to f_0$ in the $\|\cdot\|_1$ norm.

PROOF. Since $\phi_N 1 = 1/(\|F_N\|) \sum_{g \in F_N} w_g$, (i) implies (ii). Assume (ii). Let $S_1 = \{\tau_g f - f : f \in L_1(p) \text{ and } g \in G\}$ and $S_2 = \{f \in L_\infty(p) : L_g f = f \text{ for all } g \in G\}$. Let $S_0 = \text{Span } S_1 \cup S_2$. For $f \in L_1(p)$

$$\begin{split} \| \phi_{N}(\tau_{g}f - f) \|_{1} &= \frac{1}{\|F_{N}\|} \| \sum_{h \in F_{N}} (\tau_{h}\tau_{g}f - \tau_{h}f) \|^{1} \\ &\leq \frac{1}{\|F_{N}\|} \sum_{h \in gF_{N}\Delta F_{N}} \| \tau_{h}f \|_{1} \\ &\leq \|f\|_{1} \frac{\|gF_{N}\Delta F_{N}\|}{\|F_{N}\|} \to 0. \end{split}$$

So $\phi_N S$ converges to zero in the norm $\|\cdot\|_1$ for $S \in S_1$. For $S \in S_2$, $\phi_N S = S \sum_{g \in F_N} w_g / \|F_N\| = S\phi_N 1$; so $\|\phi_N S - Sf_0\|_1 \le \|S\|_{\infty} \|\phi_N 1 - f_0\|_1$ where f_0 is as in (ii). Hence, $\phi_N S \to Sf_0$ in the $\|\cdot\|_1$ norm for all $S \in S_2$. We have for all $S \in S_0$, there exists $S^* \in L_1(p)$ such that $\phi_N S \to S^*$ in the $\|\cdot\|_1$ norm. Since the operators ϕ_N are uniformly bounded, if we show S_0 is $\|\cdot\|_1$ -dense in $L_1(p)$ then we are finished. But if S_0 is not $\|\cdot\|_1$ -dense there exists $H \in L_\infty(p)$ such that $H \neq 0$ and $0 = \int SH dp$ for all $S \in S_0$. But then for all $f \in L_1(p)$,

$$0 = \int (\tau_g f - f) H \, dp = \int f(L_{g^{-1}} H - H) dp.$$

This implies $L_gH = H$ for all $g \in G$. Hence, $H \in S_2$ and $0 = \int H^2 dp$. So H = 0, a contradiction.

REMARK. If p is invariant, each $w_g = 1$ and (ii) is trivially satisfied. Thus (i) holds if p is invariant. This result is in Greenleaf [2].

The following corollary will further clarify the condition of Theorem 2.2.

COROLLARY 2.3. Let (X, β, p) and G be as above. Consider the following properties of (X, β, p) and G:

- (i) There exists a finite G-invariant measure equivalent to p.
- (ii) For all $f \in L_1(p)$, $\phi_N f$ converges in $L_1(p)$.
- (iii) For all $B \in \beta$, $(1/||F_N||) \sum_{g \in F_N} p(gB)$ converges.
- (i) implies (ii) and (ii) implies (iii) always. If G is ergodic then (iii) implies (i).

PROOF. Assume v is a finite G-invariant measure equivalent to p. Let $f_0 \in L_1(v)$ with $f_0 \ge 0$ such that $p(E) = l \int_E f_0 dv$ for all $E \in \beta$. By Theorem 2.2 applied to (X, β, v) and G, there exists $f_0^* \in L_1(v)$ such that

$$\int \left| \frac{1}{\|F_N\|} \sum_{g \in F_N} L_g f_0 - f_0^* \right| dv \to 0.$$

Then $f_0^*/f_0 \in L_1(p)$ and for all $g \in G$, $L_a f_0 = w_a f_0$. Therefore

$$\int \left| \frac{1}{\|F_N\|} \sum_{g \in F_N} w_g - f_0^* / f_0 \right| dp$$

$$= \int \left| \frac{1}{\|F_N\|} \sum_{g \in F_N} L_g f_0 - f_0^* \right| \frac{1}{f_0} dp$$

$$= \int \left| \frac{1}{\|F_N\|} \sum_{g \in F_N} L_g f_0 - f_0^* \right| dv \to 0.$$

Hence, by Theorem 2.2, we have (i) implies (ii). If (ii) holds, then in particular there is $f_1 \in L_1(p)$ such that $\phi_N 1 \to f_1$ in the $\|\cdot\|_1$ norm. Since

$$\begin{split} & \left| \int_{B} \frac{1}{\|F_{N}\|} \sum_{g \in F_{N}} w_{g} dp - \int_{B} f_{1} dp \right| \\ & \leq \left\| \frac{1}{\|F_{N}\|} \sum_{g \in F_{N}} w_{g} - f_{1} \right\|_{1} \to 0, \end{split}$$

 $\lim_{N\to\infty}\int_B (1/\|F_N\|) \sum_{g\in F_N} w_g dp$ exists. This is (iii). If (iii) holds then v(B) = $\lim_{N\to\infty} (1/\|F_N\|) \sum_{g\in F_N} p(gB)$ defines a probability measure by the Vitali-Hahn-Saks theorem. Because of the conditions on the sequence $\{F_N\}$ v is Ginvariant. If p(B)=0, then each p(gB)=0 and v(B)=0. Now if G is ergodic then p(B)>0 implies $\bigcup_{g\in G} gB=X$. a.e. [p] So v(B)>0 as well. Thus v is a measure as in (i).

REMARK. If (iii) holds then for any $\varepsilon > 0$ there is a G-invariant $B \in \beta$ with $p(X/B) < \varepsilon$ and a finite measure v supported on B such that v is equivalent to p on B and v is G-invariant. Using this, one can show (iii) implies (i) always.

If case (i) holds, we actually have when p(B) > 0 then $\inf_{g \in G} p(gB) > 0$. Hence,

the ratio condition of Corollary 1.4 holds and the condition that $\lim_N \|F^N\|^{1/N} = 1$ is the same as the condition that $\lim_N \left[\sum_{g \in F^N} p(gA) \right]^{1/N} = 1$. Also, if we choose $\{N_i\}$ as in Proposition 2.1 then $\{F^{N_i}\}$ is a Følner sequence and Corollary 2.3 (iii) holds. This should be compared with the remark after Proposition 2.1.

REFERENCES

- 1. A. Calderón, Sur les mesures invariants, C. R. Acad. Sci. Paris 240 (1955), 1960-1962.
- 2. F. Greenleaf, Ergodic theorems and the construction of summing sequences in amenable locally compact groups (to appear in Comm. Pure and Appl. Math).
- 3. S. Horowitz, On σ -finite invariant measures for Markov processes, Israel J. Math. 6 (1968), 338-345.
- 4. J. Wolf, Growth of finitely-generated solvable groups, J. Differential Geometry (4) 1 (1968), 421-446.

University of British Columbia Vancouver, Canada